The cell cycle dependent proteome

Genetically identical cells from the same clonal population may exhibit diferences in their patterns of gene- and protein expression, even when cultivated simultaneously under similar conditions. This phenomenon can be observed as variations in the staining intensity and/or pattern between cells within an immunofluorescence (IF) image, denoted single-cell variation (SCV). The scale and significance of variation at the single cell level remains poorly understood, and the origin can be both due to stochastic fluctuations or deterministic influences (Snijder B et al. (2011); Kilfoil ML et al. (2009); Ansel J et al. (2008); Colman-Lerner A et al. (2005)). Interestingly, as much as 25% (n=3141) of all human proteins localized in the Cell Atlas show single-cell variation in their expression (Thul PJ et al. (2017)). Gene Ontology (GO)-based functional enrichment analysis of these proteins reveal an enrichment for terms related to cell cycle processes and extracellular stimuli response. So far, our ongoing research has classified the variation to be cell cycle dependent for 574 proteins.

  • 3141 proteins show cell to cell variation in their expression patterns. Of these, 2959 proteins show variation in expression level (intensity), and 211 proteins shows single-cell spatial variation.
  • 574 proteins show a variation correlated to cell cycle progression.


MINDY2 - U-2 OS

KLHDC8B - U-2 OS

CNN1 - BJ


PPM1K - U-2 OS

MKI67 - A-431

LGALS1 - U-2 OS


IFIT1 - HeLa

PDX1 - HeLa

KRT17 - U-2 OS

Figure 1. Examples of proteins showing single-cell variation. MINDY2 is a hydrolase that plays a role in ubiquitination (detected in U-2 OS cells). KLHDC8B aids protein-protein interactions (detected in U-2 OS cells). CNN1 is implicated in the regulation and modulation of smooth muscle contraction (detected in BJ). PPM1K regulates the mitochondrial permeability transition pore (detected in U-2 OS cells). MKI67 is required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (detected in A-431 cells). LGALS1 plays a role in regulating apoptosis, cell proliferation and cell differentiation (detected in U-2 OS cells). IFIT1 may inhibit viral replication and translational initiation (detected in HeLa cells). PDX1 is a transcriptional activator (detected in HeLa cells). KRT17 encodes the type I intermediate filament chain keratin 17 (detected in U-2 OS cells).

Single-cell variation in the Cell Atlas

In the IF confocal images, single-cell variation can easily be observed either as different expression levels (staining intensity) or different spatial distribution as exemplified in Figure 1. Out of the 3141 proteins displaying single-cell variation, 2959 proteins show variation in expression level and 211 show variation in spatial distribution. Single-cell variation is most commonly observed for proteins localized to the nucleus, cytosol, nucleoli and mitochondria (Figure 2).

Figure 2. Distribution of the genes encoding for proteins showing single-cell variations across the different organelles, grouped by meta-compartments.

It is hypothesized that there is an underlying functional importance of single-cell variations, however the effect of these variations remain highly uncharacterized (Dueck H et al. (2016)). Factors such as environmental changes, stochasticity, cell cycle progression, DNA damage response, post-translational modifications and activation/suppression signals are all known to cause changes in protein expression within a cellular population (Alberts B et al, 2002a; Liberali P et al. (2015); Elowitz MB et al. (2002); Kaern M et al. (2005)). Proteins with single-cell varying expression alter the characteristics of isogenic cells and provide them with a specific fingerprint. Identification of all human proteins that display single-cell variation provides a starting point for studies aimed to research the driving forces of the expression dynamics and provide a functional understanding.

Gene Ontology (GO)-based enrichment analysis of genes encoding proteins with single-cell variable expression patterns reveals several functions associated with cell cycle progression and cellular response to various extracellular stimuli (Figure 3). The enriched terms for the GO domain Biological Process are related to post-translational modifications, processes involved in cell cycle progression and cellular response to various extracellular stimuli (Figure 3a). Enrichment analysis of GO domain Molecular Function provides top hits for terms related to snoRNA binding, Cdks and transcriptional activators and factors (Figure 3b). The enrichment of cell cycle related terms, further supports the hypothesis that a large extent of the observed single-cell variation may be correlated to cell cycle progression. This underlines the importance of distinguishing between variations due to the cell cycle and variations caused by other factors.

Figure 3a. Gene Ontology-based enrichment analysis for the cell cycle dependent proteome showing the significantly enriched terms for the GO domain Biological Process.

Figure 3b. Gene Ontology-based enrichment analysis for the cell cycle dependent proteome showing the significantly enriched terms for the GO domain Molecular Function.

Towards characterizing the cell cycle proteomes

The human body is estimated to contain approximately 37 trillion cells (Bianconi E et al. (2013)). Every second, it needs to reproduce many millions of cells to replace the cells that die. Consequently, cells constantly undergo duplication via the cell cycle, a highly conserved series of events that ultimately leads to division into two daughter cells. A complex network of regulatory proteins called the "cell cycle control system" keeps the cell cycle tightly controlled and responsive to various intracellular and extracellular signals. Proteins called cyclins, such as CCNA2, CCND2, CCNE1, constitute the core machinery for controlling and driving cell cycle progression together with their catalytic partners cyclin-dependent kinases, such as CDK1, CDK2, CDK4 (Malumbres M. (2014); Alberts B et al, 2002b). Aberrations in this control system can lead to proliferative diseases such as cancer (Collins K et al. (1997); Zhivotovsky B et al. (2010)).

The cell cycle consists of four main phases: gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). G1, S, and G2 are together called the interphase during which the cell grows, and is followed by the M phase, when cell division occurs. Depending on extracellular signals, the cell may enter a rest phase called G0 instead of proceeding through G1. The cell can remain in G0 phase for years or even permanently until the organism dies. During the G1 phase, the cell increases its mass of proteins and initiates the synthesis of D-type cyclins, such as CCND1 and CCND2 that binds to CDK4 or CDK6. This activated complex drives the G1/S phase transition. Thereafter, S phase is initiated, in which DNA replication occurs. Activation of S-Cdks, such as CDK2, triggers the assembly of proteins needed to unwind the DNA helix and recruit DNA polymerases and other replication enzymes onto the DNA strands. The G2 phase follows the successful completion of S phase, where the cell continues to grow and many proteins are synthesized in preparation for mitosis. After checking for and repairing DNA damage, the cell enters mitosis - the shortest, yet most crucial phase of cell division. An increase of mitotic cyclins, such as CCNB1, activates the mitotic Cdks, such as CDK1. Its activation triggers various cell rearrangements including chromosome condensation, nuclear envelope breakdown, and mitotic spindle assembly. Thereafter, the chromosomes align midway between the mitotic spindle poles before segregating and finally, the cell divides into two separate daughter cells (Alberts B et al, 2007).

The cell cycle control system is well conserved through evolution; rendering possible the study of cell cycle regulation in a variety of organisms and model systems. The most commonly studied organisms are yeast, animal embryos and mammalian cell cultures. Genome-wide studies using DNA microarray technology has revealed between 400 to 800 genes periodically expressed fin yeasts (Cho RJ et al. (1998); Spellman PT et al. (1998); Orlando DA et al. (2008); Rustici G et al. (2004)). Recent investigations in mammalian cells, show that approximately 700 genes display transcriptional fluctuations with a periodicity consistent with the cell cycle in primary human fibroblasts (Cho RJ et al. (2001)), and >850 genes are periodically expressed during the cell cycle in synchronized HeLa cells using cDNA microarrays (Whitfield ML et al. (2002)).

In addition to these metrics, 275 proteins were categorized as having a cell cycle dependent expression as they localize to structures only present at certain time points of the cell cycle. In the Cell Atlas we define these to be: the cytokinetic bridge, midbody, midbody ring and mitotic spindle.

The investigation of the extent of cell cycle dependency for the proteins exhibiting single-cell variation in their expression patterns is a work in progress. To date, evidence from our analysis can confirm that for 574 of the single-cell variable proteins the expression correlates to cell cycle position (see examples, Figure 5).


CCNB1 - U-2 OS

TOP2A - U-2 OS

CDCA2 - U-2 OS


CCNB2 - U-2 OS

PIMREG - U-2 OS

NCOA1 - U-2 OS


KIF20A - U-2 OS

CKAP2L - A-431

CTTNBP2 - HeLa

Figure 5. Example images of cell cycle dependent protein expression validated with at least one of the approaches described or by biological definition. CCNB1 is essential for the control of the cell cycle at the G2/M transition (detected in U-2 OS cells). TOP2A is involved in processes such as chromosome condensation or chromatid separation (detected in U-2 OS cells). CDCA2 is a regulator of chromosome structure during mitosis (detected in U-2 OS cells). CCNB2 is a member of the cyclin B family (detected in U-2 OS cells). PIMREG may play a role in the control of metaphase-to-anaphase transition (detected in U-2 OS cells). NCOA1 acts as a transcriptional coactivator (detected in U-2 OS cells). KIF20A is required for chromosome passenger complex (CPC) that drives cytokinesis (detected in U-2 OS cells). CKAP2L is required for mitotic spindle formation (detected in A-431 cells). CTTNBP2 regulates the dendritic spine distribution of cortactin (detected in HeLa cells).

Relevant links and publications

Alberts B et al, 2002a. Molecular Biology of the Cell. 4th edition. General Principles of Cell Communication. New York: Garland Science.

Alberts B et al, 2002b. Molecular Biology of the Cell. 4th edition. Components of the Cell-Cycle Control System. New York: Garland Science.

Alberts B et al, 2007. Molecular Biology of the Cell. 5th edition. Chapter 17. New York: Garland Science.

http://www.garlandscience.com/product/isbn/0815341059

Clegg JS., Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. (1984)
PubMed: 6364846 

Luby-Phelps K., The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. (2013)
PubMed: 23989722 DOI: 10.1091/mbc.E12-08-0617

Luby-Phelps K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. (2000)
PubMed: 10553280 

Ellis RJ., Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. (2001)
PubMed: 11590012 

Bright GR et al., Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. (1987)
PubMed: 3558476 

Kopito RR., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. (2000)
PubMed: 11121744 

Aizer A et al., Intracellular trafficking and dynamics of P bodies. Prion. (2008)
PubMed: 19242093 

Carcamo WC et al., Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol. (2014)
PubMed: 24411169 DOI: 10.1016/B978-0-12-800097-7.00002-6

Lang F., Mechanisms and significance of cell volume regulation. J Am Coll Nutr. (2007)
PubMed: 17921474 

Thul PJ et al., A subcellular map of the human proteome. Science. (2017)
PubMed: 28495876 DOI: 10.1126/science.aal3321

Uhlén M et al., Tissue-based map of the human proteome. Science (2015)
PubMed: 25613900 DOI: 10.1126/science.1260419

Boisvert FM et al., The multifunctional nucleolus. Nat Rev Mol Cell Biol. (2007)
PubMed: 17519961 DOI: 10.1038/nrm2184

Scheer U et al., Structure and function of the nucleolus. Curr Opin Cell Biol. (1999)
PubMed: 10395554 DOI: 10.1016/S0955-0674(99)80054-4

Németh A et al., Genome organization in and around the nucleolus. Trends Genet. (2011)
PubMed: 21295884 DOI: 10.1016/j.tig.2011.01.002

Cuylen S et al., Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. (2016)
PubMed: 27362226 DOI: 10.1038/nature18610

Stenström L et al., Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. (2020)
PubMed: 32744794 DOI: 10.15252/msb.20209469

Derenzini M et al., Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J Pathol. (2000)
PubMed: 10861579 DOI: 10.1002/(SICI)1096-9896(200006)191:2<181::AID-PATH607>3.0.CO;2-V

Visintin R et al., The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol. (2000)
PubMed: 10801456 

Marciniak RA et al., Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A. (1998)
PubMed: 9618508 

Tamanini F et al., The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins. Hum Mol Genet. (2000)
PubMed: 10888599 

Willemsen R et al., Association of FMRP with ribosomal precursor particles in the nucleolus. Biochem Biophys Res Commun. (1996)
PubMed: 8769090 DOI: 10.1006/bbrc.1996.1126

Isaac C et al., Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell. (2000)
PubMed: 10982400 

Drygin D et al., The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol. (2010)
PubMed: 20055700 DOI: 10.1146/annurev.pharmtox.010909.105844

Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y

Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8

Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7

Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130

Liao J et al., Single-cell RNA sequencing of human kidney. Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8

MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7

Vieira Braga FA et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. (2019)
PubMed: 31209336 DOI: 10.1038/s41591-019-0468-5

Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6

Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117

Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4

Henry GH et al., A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Rep. (2018)
PubMed: 30566875 DOI: 10.1016/j.celrep.2018.11.086

Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4

Guo J et al., The adult human testis transcriptional cell atlas. Cell Res. (2018)
PubMed: 30315278 DOI: 10.1038/s41422-018-0099-2

Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771

Barbe L et al., Toward a confocal subcellular atlas of the human proteome. Mol Cell Proteomics. (2008)
PubMed: 18029348 DOI: 10.1074/mcp.M700325-MCP200

Stadler C et al., A single fixation protocol for proteome-wide immunofluorescence localization studies. J Proteomics. (2010)
PubMed: 19896565 DOI: 10.1016/j.jprot.2009.10.012

Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005

Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453

Uhlen M et al., A proposal for validation of antibodies. Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995

Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030

Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199

Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821

Dechat T et al., Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. (2008)
PubMed: 18381888 DOI: 10.1101/gad.1652708

Gruenbaum Y et al., The nuclear lamina comes of age. Nat Rev Mol Cell Biol. (2005)
PubMed: 15688064 DOI: 10.1038/nrm1550

Stuurman N et al., Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. (1998)
PubMed: 9724605 DOI: 10.1006/jsbi.1998.3987

Paine PL et al., Nuclear envelope permeability. Nature. (1975)
PubMed: 1117994 

Reichelt R et al., Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol. (1990)
PubMed: 2324201 

CALLAN HG et al., Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond B Biol Sci. (1950)
PubMed: 14786306 

WATSON ML., The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. (1955)
PubMed: 13242591 

BAHR GF et al., The fine structure of the nuclear membrane in the larval salivary gland and midgut of Chironomus. Exp Cell Res. (1954)
PubMed: 13173504 

Terasaki M et al., A new model for nuclear envelope breakdown. Mol Biol Cell. (2001)
PubMed: 11179431 

Dultz E et al., Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol. (2008)
PubMed: 18316408 DOI: 10.1083/jcb.200707026

Salina D et al., Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell. (2002)
PubMed: 11792324 

Beaudouin J et al., Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell. (2002)
PubMed: 11792323 

Gerace L et al., The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. (1980)
PubMed: 7357605 

Ellenberg J et al., Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol. (1997)
PubMed: 9298976 

Yang L et al., Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol. (1997)
PubMed: 9182656 

Bione S et al., Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. (1994)
PubMed: 7894480 DOI: 10.1038/ng1294-323

Spector DL., Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. (1993)
PubMed: 8280462 DOI: 10.1146/annurev.cb.09.110193.001405

Lamond AI et al., Structure and function in the nucleus. Science. (1998)
PubMed: 9554838 

SWIFT H., Studies on nuclear fine structure. Brookhaven Symp Biol. (1959)
PubMed: 13836127 

Lamond AI et al., Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. (2003)
PubMed: 12923522 DOI: 10.1038/nrm1172

Thiry M., The interchromatin granules. Histol Histopathol. (1995)
PubMed: 8573995 

Sleeman JE et al., Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. (1999)
PubMed: 10531003 

Darzacq X et al., Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. EMBO J. (2002)
PubMed: 12032087 DOI: 10.1093/emboj/21.11.2746

Jády BE et al., Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. (2003)
PubMed: 12682020 DOI: 10.1093/emboj/cdg187

Liu Q et al., A novel nuclear structure containing the survival of motor neurons protein. EMBO J. (1996)
PubMed: 8670859 

Lefebvre S et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. (1995)
PubMed: 7813012 

Fischer U et al., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell. (1997)
PubMed: 9323130 

Lallemand-Breitenbach V et al., PML nuclear bodies. Cold Spring Harb Perspect Biol. (2010)
PubMed: 20452955 DOI: 10.1101/cshperspect.a000661

Booth DG et al., Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends Cell Biol. (2017)
PubMed: 28838621 DOI: 10.1016/j.tcb.2017.08.001

Ljungberg O et al., A compound follicular-parafollicular cell carcinoma of the thyroid: a new tumor entity? Cancer. (1983)
PubMed: 6136320 DOI: 10.1002/1097-0142(19830915)52:6<1053::aid-cncr2820520621>3.0.co;2-q

Melcák I et al., Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell. (2000)
PubMed: 10679009 

Spector DL et al., Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J. (1991)
PubMed: 1833187 

Misteli T et al., Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol. (1997)
PubMed: 17708924 DOI: 10.1016/S0962-8924(96)20043-1

Cmarko D et al., Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell. (1999)
PubMed: 9880337 

Van Hooser AA et al., The perichromosomal layer. Chromosoma. (2005)
PubMed: 16136320 DOI: 10.1007/s00412-005-0021-9

Booth DG et al., Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife. (2014)
PubMed: 24867636 DOI: 10.7554/eLife.01641

Pollard TD et al., Actin, a central player in cell shape and movement. Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862

Mitchison TJ et al., Actin-based cell motility and cell locomotion. Cell. (1996)
PubMed: 8608590 

Pollard TD et al., Molecular Mechanism of Cytokinesis. Annu Rev Biochem. (2019)
PubMed: 30649923 DOI: 10.1146/annurev-biochem-062917-012530

dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002

Campellone KG et al., A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867

Rottner K et al., Actin assembly mechanisms at a glance. J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433

Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1

HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. (1954)
PubMed: 13165697 

HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. (1954)
PubMed: 13165698 

Svitkina T., The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267

Kelpsch DJ et al., Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken). (2018)
PubMed: 30312531 DOI: 10.1002/ar.23959

Nigg EA et al., The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. (2011)
PubMed: 21968988 DOI: 10.1038/ncb2345

Doxsey S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol. (2001)
PubMed: 11533726 DOI: 10.1038/35089575

Bornens M., Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. (2002)
PubMed: 11792541 

Conduit PT et al., Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. (2015)
PubMed: 26373263 DOI: 10.1038/nrm4062

Tollenaere MA et al., Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci. (2015)
PubMed: 25173771 DOI: 10.1007/s00018-014-1711-3

Prosser SL et al., Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci. (2020)
PubMed: 31896603 DOI: 10.1242/jcs.239566

Rieder CL et al., The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. (2001)
PubMed: 11567874 

Badano JL et al., The centrosome in human genetic disease. Nat Rev Genet. (2005)
PubMed: 15738963 DOI: 10.1038/nrg1557

Leduc C et al., Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol. (2015)
PubMed: 25660489 DOI: 10.1016/j.ceb.2015.01.005

Lowery J et al., Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. J Biol Chem. (2015)
PubMed: 25957409 DOI: 10.1074/jbc.R115.640359

Robert A et al., Intermediate filament dynamics: What we can see now and why it matters. Bioessays. (2016)
PubMed: 26763143 DOI: 10.1002/bies.201500142

Fuchs E et al., Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. (1994)
PubMed: 7979242 DOI: 10.1146/annurev.bi.63.070194.002021

Janmey PA et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. (1991)
PubMed: 2007620 

Köster S et al., Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol. (2015)
PubMed: 25621895 DOI: 10.1016/j.ceb.2015.01.001

Herrmann H et al., Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. (2007)
PubMed: 17551517 DOI: 10.1038/nrm2197

Gauster M et al., Keratins in the human trophoblast. Histol Histopathol. (2013)
PubMed: 23450430 DOI: 10.14670/HH-28.817

Janke C., The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol. (2014)
PubMed: 25135932 DOI: 10.1083/jcb.201406055

Goodson HV et al., Microtubules and Microtubule-Associated Proteins. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29858272 DOI: 10.1101/cshperspect.a022608

Wade RH., On and around microtubules: an overview. Mol Biotechnol. (2009)
PubMed: 19565362 DOI: 10.1007/s12033-009-9193-5

Desai A et al., Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. (1997)
PubMed: 9442869 DOI: 10.1146/annurev.cellbio.13.1.83

Conde C et al., Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. (2009)
PubMed: 19377501 DOI: 10.1038/nrn2631

Wloga D et al., Post-translational modifications of microtubules. J Cell Sci. (2010)
PubMed: 20930140 DOI: 10.1242/jcs.063727

Schmoranzer J et al., Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell. (2003)
PubMed: 12686609 DOI: 10.1091/mbc.E02-08-0500

Skop AR et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. (2004)
PubMed: 15166316 DOI: 10.1126/science.1097931

Waters AM et al., Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. (2011)
PubMed: 21210154 DOI: 10.1007/s00467-010-1731-7

Matamoros AJ et al., Microtubules in health and degenerative disease of the nervous system. Brain Res Bull. (2016)
PubMed: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016

Jordan MA et al., Microtubules as a target for anticancer drugs. Nat Rev Cancer. (2004)
PubMed: 15057285 DOI: 10.1038/nrc1317

Nunnari J et al., Mitochondria: in sickness and in health. Cell. (2012)
PubMed: 22424226 DOI: 10.1016/j.cell.2012.02.035

Friedman JR et al., Mitochondrial form and function. Nature. (2014)
PubMed: 24429632 DOI: 10.1038/nature12985

Calvo SE et al., The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. (2010)
PubMed: 20690818 DOI: 10.1146/annurev-genom-082509-141720

McBride HM et al., Mitochondria: more than just a powerhouse. Curr Biol. (2006)
PubMed: 16860735 DOI: 10.1016/j.cub.2006.06.054

Schaefer AM et al., The epidemiology of mitochondrial disorders--past, present and future. Biochim Biophys Acta. (2004)
PubMed: 15576042 DOI: 10.1016/j.bbabio.2004.09.005

Schwarz DS et al., The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. (2016)
PubMed: 26433683 DOI: 10.1007/s00018-015-2052-6

Friedman JR et al., The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. (2011)
PubMed: 21900009 DOI: 10.1016/j.tcb.2011.07.004

Travers KJ et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. (2000)
PubMed: 10847680 

Roussel BD et al., Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. (2013)
PubMed: 23237905 DOI: 10.1016/S1474-4422(12)70238-7

Neve EP et al., Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr Opin Drug Discov Devel. (2010)
PubMed: 20047148 

Kulkarni-Gosavi P et al., Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett. (2019)
PubMed: 31378930 DOI: 10.1002/1873-3468.13567

Short B et al., The Golgi apparatus. Curr Biol. (2000)
PubMed: 10985372 DOI: 10.1016/s0960-9822(00)00644-8

Wei JH et al., Unraveling the Golgi ribbon. Traffic. (2010)
PubMed: 21040294 DOI: 10.1111/j.1600-0854.2010.01114.x

Wilson C et al., The Golgi apparatus: an organelle with multiple complex functions. Biochem J. (2011)
PubMed: 21158737 DOI: 10.1042/BJ20101058

Farquhar MG et al., The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. (1998)
PubMed: 9695800 

Brandizzi F et al., Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. (2013)
PubMed: 23698585 DOI: 10.1038/nrm3588

Potelle S et al., Golgi post-translational modifications and associated diseases. J Inherit Metab Dis. (2015)
PubMed: 25967285 DOI: 10.1007/s10545-015-9851-7

Jacobson K et al., The Lateral Organization and Mobility of Plasma Membrane Components. Cell. (2019)
PubMed: 31051105 DOI: 10.1016/j.cell.2019.04.018

Kobayashi T et al., Transbilayer lipid asymmetry. Curr Biol. (2018)
PubMed: 29689220 DOI: 10.1016/j.cub.2018.01.007

Krapf D., Compartmentalization of the plasma membrane. Curr Opin Cell Biol. (2018)
PubMed: 29656224 DOI: 10.1016/j.ceb.2018.04.002

Garcia MA et al., Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol. (2018)
PubMed: 28600395 DOI: 10.1101/cshperspect.a029181

Orlando K et al., Membrane organization and dynamics in cell polarity. Cold Spring Harb Perspect Biol. (2009)
PubMed: 20066116 DOI: 10.1101/cshperspect.a001321

Eaton RC et al., D2 receptors in the paraventricular nucleus regulate genital responses and copulation in male rats. Pharmacol Biochem Behav. (1991)
PubMed: 1833780 DOI: 10.1016/0091-3057(91)90418-2

Simons K et al., Cholesterol, lipid rafts, and disease. J Clin Invest. (2002)
PubMed: 12208858 DOI: 10.1172/JCI16390

Gruenberg J., The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol. (2001)
PubMed: 11584299 DOI: 10.1038/35096054

Griffiths G et al., The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. (1988)
PubMed: 2964276 

Schwake M et al., Lysosomal membrane proteins and their central role in physiology. Traffic. (2013)
PubMed: 23387372 DOI: 10.1111/tra.12056

Smith JJ et al., Peroxisomes take shape. Nat Rev Mol Cell Biol. (2013)
PubMed: 24263361 DOI: 10.1038/nrm3700

Greenberg AS et al., Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. (1991)
PubMed: 2040638 

Walther TC et al., Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. (2012)
PubMed: 22524315 DOI: 10.1146/annurev-biochem-061009-102430

Taguchi T., Emerging roles of recycling endosomes. J Biochem. (2013)
PubMed: 23625997 DOI: 10.1093/jb/mvt034

Bonifacino JS et al., Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol. (2006)
PubMed: 16936697 DOI: 10.1038/nrm1985

Antonenkov VD et al., Peroxisomes are oxidative organelles. Antioxid Redox Signal. (2010)
PubMed: 19958170 DOI: 10.1089/ars.2009.2996

von Heijne G., Signal sequences. The limits of variation. J Mol Biol. (1985)
PubMed: 4032478 

Johnson AE et al., The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol. (1999)
PubMed: 10611978 DOI: 10.1146/annurev.cellbio.15.1.799

Farhan H et al., Signalling to and from the secretory pathway. J Cell Sci. (2011)
PubMed: 21187344 DOI: 10.1242/jcs.076455

Wishart DS et al., DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. (2006)
PubMed: 16381955 DOI: 10.1093/nar/gkj067

Emanuelsson O et al., Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. (2007)
PubMed: 17446895 DOI: 10.1038/nprot.2007.131

Petersen TN et al., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. (2011)
PubMed: 21959131 DOI: 10.1038/nmeth.1701

Käll L et al., A combined transmembrane topology and signal peptide prediction method. J Mol Biol. (2004)
PubMed: 15111065 DOI: 10.1016/j.jmb.2004.03.016

Viklund H et al., SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics. (2008)
PubMed: 18945683 DOI: 10.1093/bioinformatics/btn550

Fagerberg L et al., Prediction of the human membrane proteome. Proteomics. (2010)
PubMed: 20175080 DOI: 10.1002/pmic.200900258

Kau TR et al., Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer. (2004)
PubMed: 14732865 DOI: 10.1038/nrc1274

Laurila K et al., Prediction of disease-related mutations affecting protein localization. BMC Genomics. (2009)
PubMed: 19309509 DOI: 10.1186/1471-2164-10-122

Park S et al., Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol. (2011)
PubMed: 21613983 DOI: 10.1038/msb.2011.29

Christoforou A et al., A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun. (2016)
PubMed: 26754106 DOI: 10.1038/ncomms9992

Itzhak DN et al., Global, quantitative and dynamic mapping of protein subcellular localization. Elife. (2016)
PubMed: 27278775 DOI: 10.7554/eLife.16950

Roux KJ et al., A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. (2012)
PubMed: 22412018 DOI: 10.1083/jcb.201112098

Lee SY et al., APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest. Cell Rep. (2016)
PubMed: 27184847 DOI: 10.1016/j.celrep.2016.04.064

Huh WK et al., Global analysis of protein localization in budding yeast. Nature. (2003)
PubMed: 14562095 DOI: 10.1038/nature02026

Simpson JC et al., Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. (2000)
PubMed: 11256614 DOI: 10.1093/embo-reports/kvd058

Stadler C et al., Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods. 2013 Apr;10(4):315-23 (2013)
PubMed: 23435261 DOI: 10.1038/nmeth.2377

Fagerberg L et al., Mapping the subcellular protein distribution in three human cell lines. J Proteome Res. (2011)
PubMed: 21675716 DOI: 10.1021/pr200379a

Baker M., Reproducibility crisis: Blame it on the antibodies. Nature. (2015)
PubMed: 25993940 DOI: 10.1038/521274a

Lange A et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. (2007)
PubMed: 17170104 DOI: 10.1074/jbc.R600026200

Ashmarina LI et al., 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria. J Lipid Res. (1999)
PubMed: 9869651 

Wang SC et al., Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. (2009)
PubMed: 19861462 DOI: 10.1158/1078-0432.CCR-08-2813

Jeffery CJ., Moonlighting proteins. Trends Biochem Sci. (1999)
PubMed: 10087914 

Jeffery CJ., Why study moonlighting proteins? Front Genet. (2015)
PubMed: 26150826 DOI: 10.3389/fgene.2015.00211

Pancholi V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. (2001)
PubMed: 11497239 DOI: 10.1007/pl00000910

Chapple CE et al., Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun. (2015)
PubMed: 26054620 DOI: 10.1038/ncomms8412

Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602

Massagué J., G1 cell-cycle control and cancer. Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094

Hartwell LH et al., Cell cycle control and cancer. Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877

Barnum KJ et al., Cell cycle regulation by checkpoints. Methods Mol Biol. (2014)
PubMed: 24906307 DOI: 10.1007/978-1-4939-0888-2_2

Weinberg RA., The retinoblastoma protein and cell cycle control. Cell. (1995)
PubMed: 7736585 DOI: 10.1016/0092-8674(95)90385-2

Morgan DO., Principles of CDK regulation. Nature. (1995)
PubMed: 7877684 DOI: 10.1038/374131a0

Teixeira LK et al., Ubiquitin ligases and cell cycle control. Annu Rev Biochem. (2013)
PubMed: 23495935 DOI: 10.1146/annurev-biochem-060410-105307

King RW et al., How proteolysis drives the cell cycle. Science. (1996)
PubMed: 8939846 DOI: 10.1126/science.274.5293.1652

Cho RJ et al., Transcriptional regulation and function during the human cell cycle. Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751

Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.

Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772

Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456

Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047

Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630

Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031

Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534

Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124

Snijder B et al., Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044

Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28

Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01

Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates. Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9

Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021

Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033

Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264

Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391

Gerst F et al., What role do fat cells play in pancreatic tissue? Mol Metab. (2019)
PubMed: 31113756 DOI: 10.1016/j.molmet.2019.05.001

Kilfoil ML et al., Stochastic variation: from single cells to superorganisms. HFSP J. (2009)
PubMed: 20514130 DOI: 10.2976/1.3223356

Ansel J et al., Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. (2008)
PubMed: 18404214 DOI: 10.1371/journal.pgen.1000049

Colman-Lerner A et al., Regulated cell-to-cell variation in a cell-fate decision system. Nature. (2005)
PubMed: 16170311 DOI: 10.1038/nature03998

Liberali P et al., Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet. (2015)
PubMed: 25446316 DOI: 10.1038/nrg3768

Elowitz MB et al., Stochastic gene expression in a single cell. Science. (2002)
PubMed: 12183631 DOI: 10.1126/science.1070919

Kaern M et al., Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. (2005)
PubMed: 15883588 DOI: 10.1038/nrg1615

Bianconi E et al., An estimation of the number of cells in the human body. Ann Hum Biol. (2013)
PubMed: 23829164 DOI: 10.3109/03014460.2013.807878

Malumbres M., Cyclin-dependent kinases. Genome Biol. (2014)
PubMed: 25180339 

Collins K et al., The cell cycle and cancer. Proc Natl Acad Sci U S A. (1997)
PubMed: 9096291 

Zhivotovsky B et al., Cell cycle and cell death in disease: past, present and future. J Intern Med. (2010)
PubMed: 20964732 DOI: 10.1111/j.1365-2796.2010.02282.x

Cho RJ et al., A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. (1998)
PubMed: 9702192 

Spellman PT et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. (1998)
PubMed: 9843569 

Orlando DA et al., Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. (2008)
PubMed: 18463633 DOI: 10.1038/nature06955

Rustici G et al., Periodic gene expression program of the fission yeast cell cycle. Nat Genet. (2004)
PubMed: 15195092 DOI: 10.1038/ng1377