We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
SCUBE3
HPA
RESOURCES
  • TISSUE
  • BRAIN
  • SINGLE CELL
  • SUBCELLULAR
  • CANCER
  • BLOOD
  • CELL LINE
  • STRUCTURE
  • INTERACTION
ABOUT
  • INTRODUCTION
  • HISTORY
  • ORGANIZATION
  • PUBLICATIONS
  • ACKNOWLEDGMENTS
  • CONTACT
NEWS
  • NEWS ARTICLES
  • PRESS ROOM
LEARN
  • DICTIONARY
  • PROTEIN CLASSES
  • PROTEIN EVIDENCE
  • METHODS
  • EDUCATIONAL VIDEOS
DATA
  • DOWNLOADABLE DATA
  • PUBLICATION DATA
  • RELEASE HISTORY
HELP
  • HELP & FAQ
  • ANTIBODY AVAILABILITY
  • DISCLAIMER
  • PRIVACY STATEMENT
  • LICENCE & CITATION
Fields »
Search result

Field
Term
Gene name
Class
Subclass
Category
Keyword
Chromosome
External id
Tissue
Cell type
Expression
Antibody panel
Tissue
Main location
Patient ID
Annotation
Tissue
Category
Tau score
Cluster
Reliability
Brain region
Category
Tau score
Brain region
Category
Tau score
Brain region
Category
Tau score
Cluster
Reliability
Tissue
Cell type
Enrichment
Cell type
Category
Tau score
Cell type group
Category
Tau score
Cell type
Category
Tau score
Cell type
Category
Tau score
Cell lineage
Category
Tau score
Cluster
Cluster
Location
Searches
Location
Cell line
Class
Type
Phase
Reliability
Cancer
Prognosis
Cancer
Category
Cancer
Category
Tau score
Cluster
Variants
Interacting gene (ensg_id)
Type
Number of interactions
Pathway
ipTM
Category
Category
Category
Category
Validation
Validation
Validation
Validation
Antibodies
Data type
Column


  • SUMMARY

  • TISSUE

  • BRAIN

  • SINGLE CELL

  • SUBCELL

  • CANCER

  • BLOOD

  • CELL LINE

  • STRUCTURE

  • INTERACTION

  • SCUBE3
PROTEIN SUMMARY GENE INFORMATION RNA DATA ANTIBODY DATA
Hippocampal formation Amygdala Basal ganglia Midbrain Spinal cord Cerebral cortex Cerebellum Hypothalamus Choroid plexus Retina Thyroid gland Parathyroid gland Adrenal gland Pituitary gland Lung Salivary gland Esophagus Tongue Stomach Duodenum Small intestine Rectum Colon Liver Gallbladder Pancreas Kidney Urinary bladder Testis Epididymis Prostate Seminal vesicle Vagina Breast Cervix Endometrium Fallopian tube Ovary Placenta Blood vessel Heart muscle Skeletal muscle Smooth muscle Adipose tissue Skin Bone marrow Lymph node Thymus Spleen Tonsil Appendix
SCUBE3 INFORMATION
Proteini

Full gene name according to HGNC.

Signal peptide, CUB domain and EGF like domain containing 3
Gene namei

Official gene symbol, which is typically a short form of the gene name, according to HGNC.

SCUBE3 (CEGF3, FLJ34743)
Protein classi

Assigned HPA protein class(es) for the encoded protein(s).

Read more
Disease related genes
Human disease related genes
Protein evidence Evidence at protein level (all genes)
Number of transcriptsi

Number of protein-coding transcripts from the gene as defined by Ensembl.

1
Protein interactions Interacting with 1 protein
PROTEIN EXPRESSION AND LOCALIZATION
Tissue profilei

A summary of the overall protein expression profile across the analyzed normal tissues based on knowledge-based annotation, presented in the Tissue resource.

"Estimation of protein expression could not be performed. View primary data." is shown for genes where available RNA-seq and gene/protein characterization data in combination with immunohistochemistry data has been evaluated as not sufficient to yield a reliable estimation of the protein expression profile.

Estimation of protein expression could not be performed. View primary data.
Subcellular locationi

Main subcellular location based on data generated in the subcellular section of the Human Protein Atlas.

Localized to the Plasma membrane
Predicted locationi

All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.

  • Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
  • Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).

The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.

Secreted
Extracellular locationi

All genes with at least one isoform expected to be secreted to the extracellular environment have been annotated and classified either as secreted to blood or as locally secreted, depending on the predicted final location of the corresponding protein. Proteins expected to be locally secreted have been further classified according to their site of expression.

Secreted to blood
TISSUE RNA EXPRESSION
Tissue specificityi

The RNA specificity category is based on normalized mRNA expression levels in the consensus dataset, calculated from the RNA expression levels in samples from HPA and GTEX. The categories include: tissue enriched, group enriched, tissue enhanced, low tissue specificity and not detected.

Group enriched (Blood vessel, Thyroid gland)
Tissue expression clusteri

The RNA data was used to cluster genes according to their expression across tissues. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Smooth muscle tissue - ECM organization (mainly)
Brain specificityi

The regional specificity category is based on mRNA expression levels in the analysed brain samples, grouped into 13 main brain regions and calculated for the three different species. All brain expression profiles are based on data from HPA. The specificity categories include: regionally enriched, group enriched, regionally enhanced, low regional specificity and not detected. The classification rules are the same used for the tissue specificity category

Low human brain regional specificity
Brain expression clusteri

The RNA data was used to cluster genes according to their expression across tissues. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Non-specific - Mixed function (mainly)
CELL TYPE RNA EXPRESSION
Single cell type specificityi

The RNA specificity category is based on mRNA expression levels in the analyzed cell types based on scRNA-seq data from normal tissues. The categories include: cell type enriched, group enriched, cell type enhanced, low cell type specificity and not detected.

Cell type enriched (Epicardial cells)
Single cell type
expression clusteri

The RNA data was used to cluster genes according to their expression across single cell types. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Epicardial mesothelial cells - Basic cellular functions (mainly)
Tissue cell type classificationi

Genes can have enriched specificity in different cell types in one or several tissues, or be enriched in a core cell type that appears in many different tissues.

Core cell type enriched (Smooth muscle cells)
Immune cell specificityi

The RNA specificity category is based on mRNA expression levels in the analyzed samples based on data from HPA. The categories include: cell type enriched, group enriched, cell type enhanced, low cell type specificity and not detected.

Not detected in immune cells
Immune cell
expression clusteri

The RNA data was used to cluster genes according to their expression across single cell types. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Not detected - no cluster assigned
CANCER & CELL LINES
Prognostic summary SCUBE3 is a prognostic marker in Thyroid carcinoma
Cancer specificityi

Specificity of RNA expression in 17 cancer types is categorized as either cancer enriched, group enriched, cancer enhanced, low cancer specificity and not detected.

Cancer enhanced (Thyroid Carcinoma)
Cell line
expression clusteri

The RNA data was used to cluster genes according to their expression across cell lines. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Connective tissue cells - ECM organization (mainly)
Cell line specificityi

RNA specificity category based on RNA sequencing data from cancer cell lines in the Human Protein Atlas grouped according to type of cancer. Genes are classified into six different categories (enriched, group enriched, enhanced, low specificity and not detected) according to their RNA expression levels across the panel of cell lines.

Cancer enhanced (Brain cancer, Testis cancer)
PROTEINS IN BLOOD
Secretome annotationi

All genes with at least one predicted secreted isoform have been annotated and classified with the aim to determine if the corresponding protein(s) are:

  • secreted into blood
  • locally secreted
  • or actually being attached to membrane or retained in intracellular locations like mitochondria, endoplasmatic reticulum (ER), Golgi apparatus or lysosomes.
Secreted to blood
Detected in blood by
immunoassayi

The blood-based immunoassay category applies to actively secreted proteins and is based on plasma or serum protein concentrations established with enzyme-linked immunosorbent assays, compiled from a literature search. The categories include: detected and not detected, where detection refers to a concentration found in the literature search.

Yes
Detected in blood by
mass spectrometryi

Detection or not of the gene in blood, based on spectral count estimations from a publicly available mass spectrometry-based plasma proteomics dataset obtained from the PeptideAtlas.

Read more
Yes
Proximity extension assayi

Indicates whether the protein has been measured (Data available) or not (Not available) using the Olink Explore HT proximity extension assay platform.

Read more
Data available
SomaScani

Indicates whether the protein has been measured (Data available) or not (Not available) using the SomaScan 11K platform.

Read more
Data available
PROTEIN FUNCTION
Protein function (UniProt)i

Useful information about the protein provided by UniProt.

Is a positive regulator of the BMP signaling pathway, required for proper chondrogenesis, osteogenesis and skeletal development. It acts as a coreceptor for BMP ligands, particularly BMP2 and BMP4, facilitating their interactions with BMP type I receptors 1. It is required for ligand-induced recruitment of BMP receptors to lipid rafts (By similarity). Binds to TGFBR2 and activates TGFB signaling. In lung cancer cells, could serve as an endogenous autocrine and paracrine ligand of TGFBR2, which could regulate TGFBR2 signaling and hence modulate epithelial-mesenchymal transition and cancer progression.... show less
Ligand (UniProt)i

Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.

Calcium
Gene summary (Entrez)i

Useful information about the gene from Entrez

This gene encodes a member of the signal peptide, complement subcomponents C1r/C1s, Uegf, bone morphogenetic protein-1 and epidermal growth factor-like domain containing protein family. Overexpression of this gene in human embryonic kidney cells results in secretion of a glycosylated form of the protein that forms oligomers and tethers to the cell surface. This gene is upregulated in lung cancer tumor tissue compared to healthy tissue and is associated with loss of the epithelial marker E-cadherin and with increased expression of vimentin, a mesenchymal marker. In addition, the protein encoded by this gene is a transforming growth factor beta receptor ligand, and when secreted by cancer cells, it can be cleaved in vitro to release the N-terminal epidermal growth factor-like repeat domain and the C-terminal complement subcomponents C1r/C1s domain. Both the full length protein and C-terminal fragment can bind to the transforming growth factor beta type II receptor to promote the epithelial-mesenchymal transition and tumor angiogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]... show less

Contact

  • NEWS ARTICLES
  • PRESS ROOM

The Project

  • INTRODUCTION
  • ORGANIZATION
  • PUBLICATIONS

The Human Protein Atlas

  • DOWNLOADABLE DATA
  • LICENCE & CITATION
  • HELP & FAQ
KAW logo The Human Protein Atlas project is funded
by the Knut & Alice Wallenberg Foundation.

Facebook logo X logo Bluesky logo Linkedin logo RSS feed logo contact@proteinatlas.org
GCBR logo Elixir core logo SciLifeLab logo Uppsala university logo KI logo KTH logo